ORGANIC LETTERS

2007 Vol. 9, No. 6 1109–1112

Enantioselective Synthesis of P-Stereogenic Benzophospholanes via Palladium-Catalyzed Intramolecular Cyclization

Tim J. Brunker,[†] Brian J. Anderson,[†] Natalia F. Blank,[†] David S. Glueck,*,[†] and Arnold L. Rheingold[‡]

6128 Burke Laboratory, Department of Chemistry, Dartmouth College, Hanover, New Hampshire, 03755, and Department of Chemistry, University of California, San Diego, La Jolla, California, 92093

glueck@dartmouth.edu

Received January 8, 2007

ABSTRACT

Enantioselective or diastereoselective intramolecular cyclization of functionalized secondary phosphines or their borane adducts catalyzed by chiral Pd(diphosphine) complexes gave P-stereogenic benzophospholanes in up to 70% ee. These results provide a new method for the synthesis of chiral phospholanes, which are valuable ligands in asymmetric catalysis.

Chiral phospholanes such as Me-DuPhos (1) and Me-BPE (2) are outstanding ligands for catalytic asymmetric hydrogenation. The success of these phosphines has encouraged the synthesis and application of a wide variety of analogues with chiral carbon centers on the phospholane rings. More recently, related useful P-stereogenic phospholanes such as TangPhos (3), ligand 4, i-Pr-BeePhos (5), and phosphabi-

(3) Tang, W.; Zhang, X. Angew. Chem., Int. Ed. **2002**, 41, 1612–1614. (4) Hoge, G. J. Am. Chem. Soc. **2003**, 125, 10219–10227.

cyclooctane (PBO) acylation catalyst **6**⁶ have been prepared in industrial and academic labs (Figure 1).

Because of the lack of general synthetic routes to P-stereogenic phosphines,⁷ such ligands remain relatively uninvestigated. For this reason, "not only are P-chirogenic 1,2-bisphospholanes interesting from a practical standpoint (i.e., their use in catalysis), but they also represent a worthy synthetic challenge".⁴ Here, we report a new method for enantioselective synthesis of P-stereogenic benzophospholanes via Pd-catalyzed intramolecular⁸ asymmetric phosphination.⁹ Imamoto has prepared related benzophospholanes

[†] Dartmouth College.

[‡] University of California.

⁽¹⁾ Burk, M. J. Acc. Chem. Res. 2000, 33, 363-372.

⁽²⁾ For reviews, see: (a) Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029–3070. (b) Clark, T.; Landis, C. Tetrahedron: Asymmetry 2004, 15, 2123–2137. For some recent examples, see: (c) Dubrovina, N. V.; Jiao, H.; Tararov, V. I.; Spannenberg, A.; Kadyrov, R.; Monsees, A.; Christiansen, A.; Borner, A. Eur. J. Org. Chem. 2006, 3412–3420. (d) Holz, J.; Zayas, O.; Jiao, H.; Baumann, W.; Spannenberg, A.; Monsees, A.; Riermeier, T. H.; Almena, J.; Kadyrov, R.; Borner, A. Chem.—Eur. J. 2006, 12, 5001–5013. (e) Bilenko, V.; Spannenberg, A.; Baumann, W.; Komarov, I.; Borner, A. Tetrahedron: Asymmetry 2006, 17, 2082–2087. (f) Berens, U.; Englert U.; Geyser, S.; Runsink, J.; Salzer, A. Eur. J. Org. Chem. 2006, 2100–2109. (g) Liu, D.; Zhang, X. Eur. J. Org. Chem. 2005, 646–649.

⁽⁵⁾ Shimizu, H.; Saito, T.; Kumobayashi, H. Adv. Synth. Catal. 2003, 345, 185–189.

⁽⁶⁾ Vedejs, E.; Daugulis, O. J. Am. Chem. Soc. 2003, 125, 4166-4173.
(7) (a) Grabulosa, A.; Granell, J.; Muller, G. Coord. Chem. Rev. 2007, 251, 25-90.
(b) Johansson, M. J.; Kann, N. C. Mini-Rev. Org. Chem. 2004, 1, 233-247.

⁽⁸⁾ For related intramolecular cyclizations in Pd-catalyzed amination, see: (a) Wagaw, S.; Rennels, R. A.; Buchwald, S. L. J. Am. Chem. Soc. 1997, 119, 8451–8458. (b) Kitagawa, O.; Yoshikawa, M.; Tanabe, H.; Morita, T.; Takahashi, M.; Dobashi, Y.; Taguchi, T. J. Am. Chem. Soc. 2006, 128, 12923–12931.

Figure 1. Chiral phospholanes with and without P stereocenters.

in high ee using menthol as a chiral auxiliary, but this method required fractional crystallization of diastereomers, for which overall yields were not reported. 10

Treatment of the known diiodide **7**¹¹ with a primary phosphine-borane in the presence of base (NaH or *sec*-BuLi) gave the functionalized secondary phosphine-boranes **8a**–**c** (Scheme 1). Deprotection with DABCO, Et₂NH, or more

Scheme 1. Synthesis of Substrates for Pd-Catalyzed Intramolecular Phosphination^a

^a Men = (-)-menthyl.

conveniently piperazinomethyl polystyrene gave the phosphines 9a-c. 12

As desired, intramolecular cyclization of secondary phosphines 9a-c in the presence of the base NaOSiMe₃ and a

chiral catalyst precursor Pd(diphos*)(*trans*-stilbene) gave benzophospholanes **10a**–**c** (Scheme 2, Table 1).¹³

Scheme 2. Pd-Catalyzed Intramolecular Phosphination^a

^a The catalyst precursor ([Pd*]) was Pd(diphos*)(*trans*-stilbene). See Table 1 for diphos* ligands, whose structures are included in the Supporting Information (SI).

Table 1. Asymmetric Synthesis of Benzophospholanes via Pd-Catalyzed Intramolecular Phosphination^a

ligand	substrate	time	yield (%)	ee (%)
(R,R)-Me-DuPhos	9a	3 days	80	59
(R,R) -Me-DuPhos b	9a	1 day	78	63
(R,R) -Me-DuPhos c	9a·HBF ₄	$2 ext{ days}$	48	63
(R,R)- i -Pr-DuPhos	9a	1 day	83	-66^d
(R,R)-Me-BPE	9a	3 days	76	37
(R,R) -Me-BPE e	9a	1 day	80	40
(S,S)-Me-5-Fc	9a	$2 ext{ days}$	58	-8^d
(R,S)-CyPF- t -Bu	9a	2 days	68	rac^f
(R,S)-PPF- t -Bu	9a	5 days	56	rac^f
(R,R)-Me-DuPhos	9b	20 min	86	rac^f
$(S,S)\text{-}Et\text{-}FerroTANE^g$	9b	20 min	95	rac^f
(S,S)-Me -5 -Fc	9b	$20 \min$	93	rac^f
(R,R)-Me-DuPhos	9c	1 h	48	$1:1~\mathrm{dr}^h$
$none^i$	9c	20 h	49	$1.2{:}1~\mathrm{dr}^h$
	(R,R)-Me-DuPhos (R,R) -Me-DuPhos b (R,R) -Me-DuPhos c (R,R)-i-Pr-DuPhos (R,R)-Me-BPE (R,R) -Me-BPE c (S,S)-Me-5-Fc (R,S)-CyPF- t -Bu (R,S)-PPF- t -Bu (R,R)-Me-DuPhos (S,S) -Et-FerroTANE g (S,S)-Me-5-Fc (R,R)-Me-DuPhos	(R,R)-Me-DuPhos 9a (R,R) -Me-DuPhos 9a ·HBF4 (R,R) -Me-DuPhos 9a ·HBF4 (R,R) -i-Pr-DuPhos 9a (R,R) -Me-BPE 9a (R,R) -Me-BPE 9a (S,S) -Me-5-Fc 9a (R,S) -CyPF-t-Bu 9a (R,R) -Me-DuPhos 9b (S,S) -Et-FerroTANEs 9b (S,S) -Me-5-Fc 9b (R,R) -Me-DuPhos 9c	(R,R) -Me-DuPhos 9a 3 days (R,R) -Me-DuPhos b 9a 1 day (R,R) -Me-DuPhos c 9a·HBF4 2 days (R,R) -i-Pr-DuPhos 9a 1 day (R,R) -Me-BPE 9a 1 day (S,S) -Me-5-Fc 9a 2 days (R,S) -CyPF-t-Bu 9a 2 days (R,S) -PPF-t-Bu 9a 5 days (R,R) -Me-DuPhos 9b 20 min (S,S) -Me-5-Fc 9b 20 min (S,S) -Me-5-Fc 9b 20 min (R,R) -Me-DuPhos 9c 1 h	ligand substrate time (%) (R,R)-Me-DuPhos 9a 3 days 80 (R,R)-Me-DuPhosb 9a 1 day 78 (R,R)-Me-DuPhosc 9a·HBF4 2 days 48 (R,R)-i-Pr-DuPhos 9a 1 day 83 (R,R)-Me-BPE 9a 1 day 80 (S,S)-Me-5-Fc 9a 2 days 58 (R,S)-CyPF-t-Bu 9a 2 days 68 (R,S)-PF-t-Bu 9a 5 days 56 (R,R)-Me-DuPhos 9b 20 min 95 (S,S)-Et-FerroTANE 9b 20 min 93 (S,S)-Me-5-Fc 9b 20 min 93 (R,R)-Me-DuPhos 9c 1 h 48

^a Reactions were carried out at room temperature in toluene with 5 mol % of the catalyst precursor Pd(diphos*)(trans-stilbene) and 0.12 mmol of substrate (40 mg of 9a). Isolated yields, after column chromatography, are reported. Reactions have not been optimized. ^b 300 mg of 9a. ^c With 2 equiv of NaOSiMe₃; reaction slowed after 40% conversion but went to completion when another equiv of base was added. ^d The preferred enantiomer of 10a differed for (R,R)-Me-DuPhos/(R,R)-Me-BPE vs (R,R)-i-Pr-DuPhos/(S,S)-Me-5-Fc. ^e In THF. ^f The product was racemic. ^g Catalyst precursor = Pd((S,S)-Et-FerroTANE)(Ph)(I). ¹³ Ca. 5% of the expected byproduct, presumably containing a P−Ph group, was observed. ^h dr = diastereomeric ratio. ⁱ Catalyst precursor = Pd(OAc)₂ (9 mol %); 0.32 mmol of 9c.

Phenylphosphine **9a** slowly gave benzophospholane **10a** in good yields and moderate ee. ¹⁴ Replacing air-sensitive **9a** with air-stable salt **9a·HBF**₄ gave comparable ee's (entries 1 and 3). ¹⁵ DuPhos-ligated catalysts (entries 1—4) gave higher ee's than those with the ethane-bridged BPE (entries 5 and 6), whereas use of the 1,1'-ferrocene-bridged bis-(phospholane) Me-5-Fc (entry 7) resulted in very low ee. ¹⁶ Josiphos-ligated catalysts (entries 8 and 9) gave racemic

1110 Org. Lett., Vol. 9, No. 6, 2007

^{(9) (}a) Moncarz, J. R.; Laritcheva, N. F.; Glueck, D. S. J. Am. Chem. Soc. 2002, 124, 13356–13357. (b) Moncarz, J. R.; Brunker, T. J.; Jewett, J. C.; Orchowski, M.; Glueck, D. S.; Sommer, R. D.; Lam, K.-C.; Incarvito, C. D.; Concolino, T. E.; Ceccarelli, C.; Zakharov, L. N.; Rheingold, A. L. Organometallics 2003, 22, 3205–3221. (c) Korff, C.; Helmchen, G. Chem. Commun. 2004, 530–531. (d) Pican, S.; Gaumont, A.-C. Chem. Commun. 2005, 2393–2395

⁽¹⁰⁾ Imamoto, T.; Yoshizawa, T.; Hirose, K.; Wada, Y.; Masuda, H.; Yamaguchi, K.; Seki, H. *Heteroat. Chem.* **1995**, *6*, 99–104.

⁽¹¹⁾ Ripa, L.; Hallberg, A. J. Org. Chem. 1996, 61, 7147-7155.

⁽¹²⁾ Sayalero, S.; Pericas, M. A. Synlett 2006, 2585-2588.

⁽¹³⁾ Brunker, T. J.; Blank, N. F.; Moncarz, J. R.; Scriban, C.; Anderson, B. J.; Glueck, D. S.; Zakharov, L. N.; Golen, J. A.; Sommer, R. D.; Incarvito, C. D.; Rheingold, A. L. *Organometallics* **2005**, *24*, 2730–2746.

⁽¹⁴⁾ For synthesis of racemic **10a**, see: Quin, L. D.; Rao, N. S. *J. Org. Chem.* **1983**, 48, 3754–3759. For the P-Et analogue, see: Mann, F. G.; Millar, I. T. *J. Chem. Soc.* **1951**, 2205–2206.

⁽¹⁵⁾ Netherton, M. R.; Fu, G. C. Org. Lett. **2001**, *3*, 4295–4298.

⁽¹⁶⁾ Burk, M. J.; Gross, M. F. Tetrahedron Lett. 1994, 35, 9363-9366.

product, and several byproducts were formed when the bis-(phosphetane) (*S*,*S*)-Et-FerroTANE was used.

In contrast, reaction of cyclohexylphosphine **9b** was complete in minutes to give racemic cyclic phosphine **10b** in high yields (entries 10–12). This reaction was accompanied by displacement of the chiral diphosphine from Pd. Similarly, little diastereoselectivity was observed for the intramolecular coupling of **9c** (entries 13 and 14).¹⁷

The displacement of the chiral ligand observed in cyclization of alkylphosphine **9b** is a common problem in metalcatalyzed asymmetric P—C bond formation. It can sometimes be avoided by using phosphine-boranes instead of phosphines as substrates. ^{9b,d} The alkylphosphine-boranes **8b** and **8c** did not undergo Pd-catalyzed cyclization at room temperature, and byproducts were formed from **8b** at 50 °C. However, the phenylphosphine-borane substrate **8a** reacted smoothly to yield benzophospholane-borane **11a** in moderate ee; the preferred enantiomer was the same as that formed in cyclization of phosphine **9a** (Scheme 3, Table 2).

Scheme 3. Pd-Catalyzed Enantioselective Cyclization of Phosphine-borane **8a** and Its Possible Relationship to Cyclization of Phosphine **9a**^a

^a Catalyst precursor $[Pd^*] = Pd(diphos^*)(trans-stilbene)$, diphos* = (R,R)-Me-DuPhos or (R,R)-Me-BPE. L is a Lewis base, such as the solvent THF.

Table 2. Pd-Catalyzed Enantioselective Cyclization of Phosphine-borane 8a and the Analogous Phosphine $9a^a$

entry	ligand	substrate	time (days)	yield (%)	ee (%)
1	(R,R)-Me-DuPhos	8a	6	60	61
2	(R,R) -Me-DuPhos b	8a	5	89	70
3	(R,R)-Me-DuPhos	9a	3	80	59
4	(R,R)-Me-DuPhos	9a	1	78	63
5	(R,R)-Me-BPE	8a	6	63	36
6	(R,R)-Me-BPE	9a	3	76	37
7	(R,R)-Me-BPE	9a	1	80	40

^a Reactions were carried out at room temperature in THF with 5 mol % of the catalyst precursor Pd(diphos*)(*trans*-stilbene) and 0.14 mmol of substrate (50 mg of 8a). Isolated yields, after column chromatography, are reported. Entries 3 and 4 and 6 and 7 are reproduced from Table 1 (entries 1 and 2 and 5 and 6) for comparison. ^b 500 mg of 8a.

Because the ee in the cyclization of **8a** and its phosphine analogue **9a** was similar with two different catalysts, the true

active species in catalysis with **8a** might be **9a**, formed in an unfavorable equilibrium by reversible dissociation of borane from **8a** (Scheme 3). ¹⁸ Consistent with this hypothesis, Pd((*R*,*R*)-Me-DuPhos)-catalyzed cyclization of **8a** was much slower when 1 equiv of BH₃(SMe₂) was added, and *alkyl*phosphine boranes **8b,c**, in which the borane is expected to be less labile, did not undergo cyclization. ^{19,20}

Benzophospholane-boranes 11a and 11b could also be prepared from 10 and BH₃(SMe₂);²⁰ similarly, treatment of 10a with sulfur gave 12 (Scheme 4; the crystal structure in Figure 2 confirmed the presence of the benzophospholane ring system).

Scheme 4. Protection of Benzophospholanes

10 11 or 12

 $E = BH_3 (R = Ph (11a), Cy (11b))$ E = S (R = Ph (12))

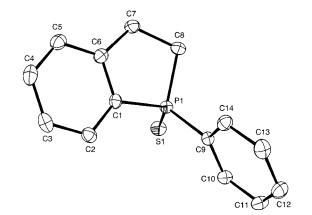


Figure 2. ORTEP diagram of 12.

Both P and C stereochemistries have been controlled by chiral base-mediated α -deprotonation of the phospholane ring.²¹ Instead, stereocontrol of α -alkylation in enantioenriched benzophospholanes might occur by a relay from the P stereocenter. Indeed, α -methylation of **11a** gave a 7:1

Org. Lett., Vol. 9, No. 6, 2007

⁽¹⁷⁾ Blank, N. F.; McBroom, K. C.; Glueck, D. S.; Kassel, W. S.; Rheingold, A. L. *Organometallics* **2006**, *25*, 1742–1748.

⁽¹⁸⁾ Imamoto, T.; Oshiki, T.; Onozawa, T.; Matsuo, M.; Hikosaka, T.; Yanagawa, M. *Heteroat. Chem.* **1992**, *3*, 563–575.

⁽¹⁹⁾ Cyclization of **8a** (3.0 g) with 5 mol % of Pd(dba)₂ and NaOSiMe₃ in THF gave racemic **11a** in 58% yield; see the Supporting Information for details.

⁽²⁰⁾ Ohff, M.; Holz, J.; Quirmbach, M.; Borner, A. Synthesis 1998, 1391-1413.

⁽²¹⁾ See refs 2a,b and 3. For related examples, see: (a) Ohashi, A.; Imamoto, T. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2000, 56, 723–725. (b) Imamoto, T.; Oohara, N.; Takahashi, H. Synthesis 2004, 1353–1358. (c) Tang, W.; Wang, W.; Zhang, X. Angew. Chem., Int. Ed. 2003, 42, 943–946. (d) Tang, W.; Wang, W.; Chi, Y.; Zhang, X. Angew. Chem., Int. Ed. 2003, 42, 3509–3511. (e) Blake, A. J.; Hume, S. C.; Li, W.-S.; Simpkins, N. S. Tetrahedron 2002, 58, 4589–4602. (f) Kobayashi, S.; Shiraishi, N.; Lam, W. W.-L.; Manabe, K. Tetrahedron Lett. 2001, 42, 7303–7306.

mixture of diastereomers of 13; the major diastereomer was isolated in 64% yield (Scheme 5). As expected from steric

Scheme 5. Diastereoselective Methylation of Benzophospholane **11a**^a

^a Absolute configuration of these compounds has not been established. The stereochemistry has been drawn arbitrarily to emphasize the trans relationship of the Me and P-Ph groups in the major diastereomer of 13.

considerations, 21 it contained *trans*-Ph and -Me groups, according to X-ray crystallography (Figure 3) and a 1 H NMR NOE study. 22

In summary, we have investigated Pd-catalyzed asymmetric phosphination as a novel approach to the valuable phospholane ring structure.²³ Promising enantioselectivity in the cyclization of phenylphosphine substrates **8a** and **9a** along with the diastereoselective methylation of the α -posi-

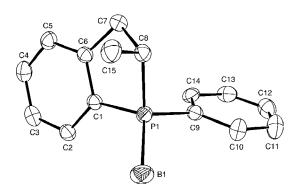


Figure 3. ORTEP diagram of the major diastereomer of 13.

tion in 11a suggest that this chemistry may be useful in the synthesis of phospholanes for applications in asymmetric catalysis.

Acknowledgment. We thank the National Science Foundation for support, the Department of Education for a GAANN fellowship to B.J.A., and Robert Crabtree (Yale) for a valuable suggestion.

Supporting Information Available: Experimental procedures and characterization data. This material is available free of charge via the Internet at http://pubs.acs.org.

OL0700512

1112 Org. Lett., Vol. 9, No. 6, 2007

⁽²²⁾ For a borane-free benzophospholane isomeric to **13** (Me substitution in the benzylic position), see: Egan, W.; Tang, R.; Zon, G.; Mislow, K. *J. Am. Chem. Soc.* **1971**, *93*, 6205–6216.

⁽²³⁾ Yoon, T. P.; Jacobsen, E. N. *Science* **2003**, 299, 1691–1693.